# Download Calculus 2c, Examples of Maximum and Minimum Integration and by Mejlbro L. PDF

By Mejlbro L.

Best analysis books

Functionentheorie: eine Einfuehrung

Die Funktionentheorie behandelt die research einer komplexen Ver? nderlichen. Dieses Buch, geschrieben im bekannten J? nich-Stil, bietet f? r Studenten im Grundstudium eine straffe und kompakte, dabei stets mathematisch pr? zise erste Einf? hrung. Ausgehend vom Cauchyschen Integralsatz wird der Leser an die grundlegenden Begriffe und S?

Partial regularity for harmonic maps and related problems

The booklet offers a suite of effects relating the partial regularity of ideas to varied variational difficulties, all of that are hooked up to the Dirichlet power of maps among Riemannian manifolds, and therefore relating to the harmonic map challenge. the subjects coated comprise harmonic maps and generalized harmonic maps; yes perturbed types of the harmonic map equation; the harmonic map warmth circulation; and the Landau-Lifshitz (or Landau-Lifshitz-Gilbert) equation.

Extra info for Calculus 2c, Examples of Maximum and Minimum Integration and Vector Analysis

Example text

D 2. The domain is here written (note again the order of x and y): B = {(x, y) ∈ R2 | 0 ≤ y ≤ a, 0 ≤ x ≤ y}. Then we turn to the double integral, a x exp y 3 dS = (4) y 0 B a x exp y 3 dx dy = 0 0 y exp y 3 x dx dy. 0 The inner integral is calculated in the following way: y 1 2 x 2 x dx = 0 y = 0 1 2 y . 2 By insertion in (4) followed by the substitution t = y 3 and dt = 3y 2 dy, where y 2 dy already can be found in the integrand, we get x exp y 3 a dS = B = 3 a 1 1 1 exp y · y 2 dy = exp(t) · · dt 2 2 3 0 0 1 t a3 1 e 0 = exp a3 − 1 .

In this case we write the domain in the form B = {(x, y) ∈ R2 | 0 ≤ x ≤ 2, 1 − 1 x ≤ y ≤ 1}. 2 Notice that the outer variable x must always lie between two constants, 0 ≤ x ≤ 2. e. in this particular case 1 − x ≤ y ≤ 1. 2 Then write down the double integral: 2 (2) 1 xy dS = 1− 12 x 0 B 2 xy dy dx = 1 x 1− 12 x 0 y dy dx. Calculate the inner integral, 1 1− 12 y dy = x 1 2 y 2 1 = 1− 12 x 1 2 1− 1− 2 1 x 2 = 1 2 1− 1 2 x 4 = 1 1 x − x2 . 2 8 By insertion in (2), we get 2 xy dS = x 0 B = 1 1 x − x2 dx = 2 8 1 3 1 4 x − x 6 32 2 = 0 2 1 2 1 3 x − x dx 2 8 0 5 8 1 − = .

Examine whether these points are also extrema. D. This is an example where the (r, s, t)-method is of no use at the point (0, 0). ) is not a universal method, which can handle all cases. We shall therefore here use the alternative method of the approximating polynomials. This is in general far better than the (r, s, t)-method, although this is not a universal method either. 4 Aside! None of the two methods above can solve the same problem of extrema for the function 1 for (x, y) = (0, 0), g(x, y) = exp − 2 x + y2 supplied by continuity with g(0, 0) = 0.