# Download Bounded positive critical points of some multiple integrals by Boccardo L., Pellacci B. PDF

By Boccardo L., Pellacci B.

Read or Download Bounded positive critical points of some multiple integrals of the calculus of variations PDF

Best analysis books

Functionentheorie: eine Einfuehrung

Die Funktionentheorie behandelt die research einer komplexen Ver? nderlichen. Dieses Buch, geschrieben im bekannten J? nich-Stil, bietet f? r Studenten im Grundstudium eine straffe und kompakte, dabei stets mathematisch pr? zise erste Einf? hrung. Ausgehend vom Cauchyschen Integralsatz wird der Leser an die grundlegenden Begriffe und S?

Partial regularity for harmonic maps and related problems

The publication offers a suite of effects touching on the partial regularity of recommendations to numerous variational difficulties, all of that are attached to the Dirichlet power of maps among Riemannian manifolds, and therefore regarding the harmonic map challenge. the themes coated comprise harmonic maps and generalized harmonic maps; convinced perturbed models of the harmonic map equation; the harmonic map warmth circulate; and the Landau-Lifshitz (or Landau-Lifshitz-Gilbert) equation.

Extra resources for Bounded positive critical points of some multiple integrals of the calculus of variations

Sample text

N ( 1 + _£) · n�oo e' = lim r2. J � n n Show that the function of a complex variable z defined by cos z = e;, + 2 e-iz ( . eit resp. sin z = _ e-iz 2i ) is the analytic extension to the whole plane C of the function cos x (resp. sin x) defined in § 3, no. 3, Prove that, for any z, z' e C, cos (z + z') =cos z cos z' - sin z sin z', sin (z + z') =sin z cos z' + cos z sin z'; cos2 z + sin2 z = I. r 3. Prove the relations � x < sin x TC < x for x real and o < x < 7t/2. EXERCISES =x + ry with 14. Let (i) Show that z x, y real.

O 47 POWER (iii ) Let S(X)= }": n�1 SERIES X • n2 IN ONE VARIABLE now and let D be the intersection of the open / disc lzl < 1 and of the open disc lz- I I< constant a such that I. Show that there exists a S(z) + S(1 -z)=a -log zlog (1 ---z) for ze D, where log denotes the principal branch of the complex logarithm in the half�plane Re(�)> o (which contains D). (Note tha�,. if z e D, then log (I -z)= -T(z) with T(X) because of proposition 6. S'(X), of § 3, and that proposition 6. I d = = log ( 1 -z) z � I-Z for 2 of § 3 gives zeD.

C(c + 1) ... (c + n - l) . n - l) x· +. + Show that its sum S(z), for fzJ < p(S), satisfies the differential equation z(1 -z)S" + (c-(a + b + l)z)S' - abS 7. Put Let S(X) s. = a0 + = o. , t. ) · n > === 1. X•. X•, n�O Show that : (i) p(U) = p(V) 1 -- = l-z 8. z•. X• be a formal power series whose coefficients are n�O defined by the. following recurrence relations : a0 = o, a1 = l, a. = oi:an-1 + �an-2 for n > 2, where a, � are given real numbers. a) Show that, for n > 1, we have fa . , l�I, 1/2) and deduce that the radius of convergence p(S) =F o.